Difference between revisions of "De Morgan's Law"

From TRCCompSci - AQA Computer Science
Jump to: navigation, search
(Example 4)
(How to apply)
Line 23: Line 23:
 
===Example 4===
 
===Example 4===
 
<math> (\overline{A} + B) . \overline{(A + (\overline{B +A})}) </math>
 
<math> (\overline{A} + B) . \overline{(A + (\overline{B +A})}) </math>
 +
 +
===Example 5===
 +
<math> \overline{\overline{(\overline{A}+A.(A+B))} + (B . C)} </math>

Revision as of 12:53, 9 May 2018

DeMorgan's laws are the laws of how a NOT gate affects AND and OR statements. They can be easily remembered by "break the line, change the sign". The following image is how to prove De Morgan's Law...

Capture3.jpg

The Process

Step 1 - Reverse the sign

Step 2 - Negate each term

Step 3 - Negate the whole expression

How to apply

Example 1

[math] \overline{(\overline{A+B})+B} [/math]

Example 2

[math](\overline{A+\overline{B}).\overline{A}}[/math]

Example 3

[math] \overline{((\overline{A+B}).\overline{A}} [/math]

Example 4

[math] (\overline{A} + B) . \overline{(A + (\overline{B +A})}) [/math]

Example 5

[math] \overline{\overline{(\overline{A}+A.(A+B))} + (B . C)} [/math]