Difference between revisions of "Boolean Algebra"

From TRCCompSci - AQA Computer Science
Jump to: navigation, search
(Solving Boolean Equations)
Line 112: Line 112:
 
Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:
 
Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:
  
==Example 1==
+
===Example 1===
 
<math> \overline{\overline{A}} . \overline{(B+C)} = A. \overline{B} . \overline{C} </math>
 
<math> \overline{\overline{A}} . \overline{(B+C)} = A. \overline{B} . \overline{C} </math>
 
<br /><br />
 
<br /><br />
Line 121: Line 121:
 
<math> A . (\overline{B} . \overline{C}) = A . \overline{B} . \overline{C} </math>    ''Use Associate Law''
 
<math> A . (\overline{B} . \overline{C}) = A . \overline{B} . \overline{C} </math>    ''Use Associate Law''
  
==Example 2==
+
===Example 2===
 
<math> (\overline{A} + A) . (\overline{A} + C) </math>
 
<math> (\overline{A} + A) . (\overline{A} + C) </math>
  
Line 136: Line 136:
 
<math>= (\overline{A} + C)</math>
 
<math>= (\overline{A} + C)</math>
  
==Example 3==
+
===Example 3===
 
<math>(X + Y) . (X + \overline{Y})</math>
 
<math>(X + Y) . (X + \overline{Y})</math>
 
<br>Distributive:  
 
<br>Distributive:  
Line 144: Line 144:
 
<p><math> X.1 = X</math>
 
<p><math> X.1 = X</math>
  
==Example 4==
+
===Example 4===
  
 
Expression Rule(s) Used
 
Expression Rule(s) Used
Line 153: Line 153:
 
T Identity Law.
 
T Identity Law.
  
==Example 5==
+
===Example 5===
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 171: Line 171:
 
|}
 
|}
  
==Example 6==
+
===Example 6===
 
<math>
 
<math>
 
\overline{A.B}(\overline{A} + B)(\overline{B} + B) </math>      Original Expression
 
\overline{A.B}(\overline{A} + B)(\overline{B} + B) </math>      Original Expression
Line 187: Line 187:
 
\overline{A} </math> Complement, Identity.
 
\overline{A} </math> Complement, Identity.
  
==Example 7==
+
===Example 7===
  
  
Line 210: Line 210:
 
<math>A + C</math> Identity, twice.
 
<math>A + C</math> Identity, twice.
  
==Example 8==
+
===Example 8===
  
  
Line 229: Line 229:
 
<math> X </math>
 
<math> X </math>
  
==Example 9==
+
===Example 9===
 
<math> (X + Y) . (X + \overline{Y}) </math>
 
<math> (X + Y) . (X + \overline{Y}) </math>
  
Line 242: Line 242:
 
<math> (X + Y) . (X + \overline{Y}) = X  </math>
 
<math> (X + Y) . (X + \overline{Y}) = X  </math>
  
==Example 10==
+
===Example 10===
 
Simplify:
 
Simplify:
  
Line 263: Line 263:
 
<math> \overline {A} </math>
 
<math> \overline {A} </math>
  
==Example 11==
+
===Example 11===
 
<math> \overline{A} . (A + B) . (A.C) \\
 
<math> \overline{A} . (A + B) . (A.C) \\
  
Line 274: Line 274:
 
\overline{A} . B . C </math>
 
\overline{A} . B . C </math>
  
==Example 12==
+
===Example 12===
 
Simplify
 
Simplify
  
Line 295: Line 295:
 
<math> A + B </math>
 
<math> A + B </math>
  
==Example 13==
+
===Example 13===
 
'''Simplify:'''
 
'''Simplify:'''
 
<math> X.(\overline{X}+Y) </math>
 
<math> X.(\overline{X}+Y) </math>
Line 307: Line 307:
 
Fully simplified the equation
 
Fully simplified the equation
  
==Example 14==
+
===Example 14===
 
Simplify the following:
 
Simplify the following:
 
<math> \overline{ \overline{(A.A)}. \overline{(B.B)}} </math>
 
<math> \overline{ \overline{(A.A)}. \overline{(B.B)}} </math>
Line 329: Line 329:
 
<math> A+B </math>
 
<math> A+B </math>
  
==Example 15==
+
===Example 15===
 
For this example the Boolean Algebra itself is shown above while the description/the rules that have been used are listed below it:
 
For this example the Boolean Algebra itself is shown above while the description/the rules that have been used are listed below it:
  

Revision as of 14:50, 29 June 2018

Boolean Identities

Using AND

A.1=A

This equation means that the output is determined by the value of A. So if A =0, The output is 0, and vice versa.

0.A=0

Because there is a 0 in this equation, the output of this will always be 0 regardless of the value of A.

A.A=A

The output is determined by A alone in this equation. This can be simplified to just "A".

A.¯A=0

Here the output will be 0, regardless of A's value. A would have to be 1 and 0 for the output to be 1. This means we can simplify this to just 0.

Using OR

0+A=A

0 or A can be simplified as just A.

1+A=1

1 or A can be simplified as just 1.

A+A=A

A or A can be simplified as just A.

¯A+A=1

NOT A or A can be simplified as just 1.

Boolean Laws

Commutative Law

The Commutative Law is where equations are the same no matter what way around the letters are written. For example

A+B=B+A

or

A.B=B.A

Associate Law

If all of the symbols are the same it doesn't matter which order the equation is evaluated.

A+(B+C)=B+(A+C)

A+(B+C)=B+(A+C)

A+(B+C)=C+(A+B)

So:

A.(B.C)=B.(A.C)

A.(B.C)=B.(A.C)

A.(B.C)=C.(A.B)

Distributive Law

The distributive law is these two equations.

A.(B+C)=A.B+A.C

A+(B.C)=(A+B).(A+C)

This is essentially factorising or expanding the brackets, but you can also:

A.B+A.C=A.(B+C)

A+B.A+C=A+(B.C)

Redundancy Law

Law 1 : A+¯AB=A+B

Proof :

=A+¯AB=(A+¯A)(A+B)=1.(A+B)=A+B


Law 2: A.(¯A+B)=A.B

Proof :

=A.(¯A+B)=A.¯A+A.B=0+A.B=A.B

Identity Law

This is also in the identities section:

A.A=A

A+A=A

Negation Law

Just like in any other logic negating a negative is a positive so:

¯¯A=A

Solving Boolean Equations

Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:

Example 1

¯¯A.¯(B+C)=A.¯B.¯C

¯¯A=A Use Negation Law

¯(B+C)=(¯B.¯C) Use De Morgan's Law

A.(¯B.¯C)=A.¯B.¯C Use Associate Law

Example 2

(¯A+A).(¯A+C)

OR Identity

(¯A+A)=1

AND Identity

=1.(¯A+C)

Simplify

=(¯A+C)

Example 3

(X+Y).(X+¯Y)
Distributive:
X.(Y+¯Y)
Identity laws:
Y+¯Y=1

X.1=X

Example 4

Expression Rule(s) Used C + BC Original Expression C + (B + C) DeMorgan's Law. (C + C) + B Commutative, Associative Laws. T + B Complement Law. T Identity Law.

Example 5

Simplify: AB(A + B)(B + B):
Expression Rule(s) Used
AB(A + B)(B + B) Original Expression
AB(A + B) Complement law, Identity law.
(A + B)(A + B) DeMorgan's Law
A + BB Distributive law. This step uses the fact that or distributes over and. It can look a bit strange since addition does not distribute over multiplication
A Complement, Identity

Example 6

¯A.B(¯A+B)(¯B+B) Original Expression

¯AB(¯A+B) Complement law, Identity law.

(¯A+¯B)(¯A+B) DeMorgan's Law

¯A+¯B.B Distributive law. This step uses the fact that or distributes over and.

¯A Complement, Identity.

Example 7

SIMPLIFY (A+C)A+AC+C


(A+C)A+AC+C Complement, Identity.


A((A+C)+C)+C Commutative, Distributive.


A(A+C)+C Associative, Idempotent.


AA+AC+C Distributive.


A+(A+T)C Idempotent, Identity, Distributive.


A+C Identity, twice.

Example 8

Simplify

(X+Y).(X+¯Y)

solution

X.X+X.¯Y+Y.X+Y.¯Y Expanding the brackets

X+X.¯Y+Y.X+0 Use of X.X=X and Y.¯Y=0

X+X(¯Y+Y) Taking X out of the brackets

X+X(1) Use of Y+¯Y=1

X(1)

X

Example 9

(X+Y).(X+¯Y)

X+(Y.¯Y) after distributive law applied

(Y.¯Y)=0

X+0

X

(X+Y).(X+¯Y)=X

Example 10

Simplify:

¯AB(¯A+B)(¯B+B)

Complement law, Identity law

¯AB(¯A+B).1

DeMorgan's law

(¯A+¯B)(¯A+B)

Distributive law

¯A+¯BB

Complement, Identity

¯A

Example 11

¯A.(A+B).(A.C)(¯A.A+¯A.B).(A+C)¯A.A.A+¯A.A.B+¯A.A.C+¯A.B.C0+0+0+¯A.B.C¯A.B.C

Example 12

Simplify

¯¯A+¯(B.A)

First, using De Morgan’s Law simplify it to

¯¯A+¯B+¯A

This can then be simplified to

¯¯A+¯B

Then using De Morgan’s Law again, you get

¯¯A+¯¯B

Then there are double negatives, so you end up with

A+B

Example 13

Simplify: X.(¯X+Y)

(X.¯X)+(X.Y) using the Distributive Law

0+(X.Y) using the identity A.¯A=0

X.Y using the identity A+0=A

Fully simplified the equation

Example 14

Simplify the following: ¯¯(A.A).¯(B.B)

Using De Morgan's law we can put the equation into another form:

1. Change All operations,

¯¯(A+A)+¯(B+B)

2. Negate letters:

¯(A+A)+(B+B)

3. Negate the whole expression:

(A+A)+(B+B)

Using the identity law, we can then simplify this expression to:

A+B

Example 15

For this example the Boolean Algebra itself is shown above while the description/the rules that have been used are listed below it:

¯A(A+B)+(B+AA)(A+¯B)

Original expression

¯AA+¯AB+(B+A)A+(B+A)¯B

Idempotent (AA to A), then Distributive, used twice.

¯AB+(B+A)A+(B+A)¯B

Complement, then Identity. (Strictly speaking, we also used the Commutative Law for each of these applications.)

¯AB+BA+AA+B¯B+A¯B

Distributive, two places.

¯AB+BA+A+A¯B

Idempotent (for the A's), then Complement and Identity to remove BB.

¯AB+AB+AT+A¯B

Commutative, Identity; setting up for the next step.

¯AB+A(B+T+¯B)

Distributive.

¯AB+A

Identity, twice (depending how you count it).

A+¯AB

Commutative.

(A+¯A)(A+B)

Distributive.

A+B

Complement, Identity.

Example 16