Difference between revisions of "Boolean Algebra"

From TRCCompSci - AQA Computer Science
Jump to: navigation, search
(Solving Boolean Equations)
Line 120: Line 120:
  
 
===Example 1===
 
===Example 1===
<math> \overline{\overline{A}} . \overline{(B+C)} = A. \overline{B} . \overline{C} </math>
+
 
<br /><br />
 
<math> \overline{\overline{A}} = A </math>    ''Use Negation Law''
 
<br /><br />
 
<math> \overline{(B+C)} = (\overline{B} . \overline{C}) </math>    ''Use De Morgan's Law''
 
<br /><br />
 
<math> A . (\overline{B} . \overline{C}) = A . \overline{B} . \overline{C} </math>    ''Use Associate Law''
 
  
 
===Example 2===
 
===Example 2===
Line 153: Line 147:
 
===Example 4===
 
===Example 4===
  
Expression Rule(s) Used
+
 
C + BC Original Expression
 
C + (B + C) DeMorgan's Law.
 
(C + C) + B Commutative, Associative Laws.
 
T + B Complement Law.
 
T Identity Law.
 
  
 
===Example 5===
 
===Example 5===
{| class="wikitable"
+
 
|-
 
! Simplify:  !! AB(A + B)(B + B):
 
|-
 
| Expression || Rule(s) Used
 
|-
 
| AB(A + B)(B + B) || Original Expression
 
|-
 
| AB(A + B) || Complement law, Identity law.
 
|-
 
| (A + B)(A + B) || DeMorgan's Law
 
|-
 
| A + BB || Distributive law. This step uses the fact that or distributes over and. It can look a bit strange since addition does not distribute over multiplication
 
|-
 
| A || Complement, Identity
 
|}
 
  
 
===Example 6===
 
===Example 6===
<math>
 
\overline{A.B}(\overline{A} + B)(\overline{B} + B) </math>      Original Expression
 
 
<math>
 
\overline{AB}(\overline{A} + B) </math> Complement law, Identity law.
 
 
<math>
 
(\overline{A} + \overline{B})(\overline{A} + B) </math> DeMorgan's Law
 
 
<math>
 
\overline{A} + \overline{B}.B </math> Distributive law. This step uses the fact that or distributes over and.
 
  
<math>
 
\overline{A} </math> Complement, Identity.
 
  
 
===Example 7===
 
===Example 7===
Line 250: Line 211:
  
 
===Example 10===
 
===Example 10===
Simplify:
 
 
<math> \overline {AB} (\overline {A}+B)(\overline {B}+B) </math>
 
 
Complement law, Identity law
 
 
<math> \overline {AB} (\overline {A}+B).1 </math>
 
 
DeMorgan's law 
 
 
<math> (\overline {A}+\overline {B})(\overline {A}+B) </math>
 
 
Distributive law
 
 
<math> \overline {A}+\overline {B}B </math>
 
 
Complement, Identity
 
  
<math> \overline {A} </math>
 
  
 
===Example 11===
 
===Example 11===
Line 282: Line 225:
  
 
===Example 12===
 
===Example 12===
Simplify
 
 
<math>\overline{\overline{A} + \overline{(B.A)}}</math>
 
 
First, using De Morgan’s Law simplify it to
 
 
<math> \overline{\overline{A} + \overline{B} + \overline{A}} </math>
 
 
This can then be simplified to
 
 
<math> \overline{\overline{A} + \overline{B}} </math>
 
 
Then using De Morgan’s Law again, you get
 
 
<math> \overline{\overline{A}} + \overline{\overline{B}} </math>
 
 
Then there are double negatives, so you end up with
 
  
<math> A + B </math>
 
  
 
===Example 13===
 
===Example 13===
Line 315: Line 240:
  
 
===Example 14===
 
===Example 14===
Simplify the following:
 
<math> \overline{ \overline{(A.A)}. \overline{(B.B)}} </math>
 
 
Using De Morgan's law we can put the equation into another form:
 
 
1. Change All operations,
 
 
<math> \overline{ \overline{(A+A)}+ \overline{(B+B)}} </math>
 
 
2. Negate letters:
 
 
<math> \overline{ (A+A)+(B+B) } </math>
 
 
3. Negate the whole expression:
 
 
<math> (A+A)+(B+B) </math>
 
 
Using the identity law, we can then simplify this expression to:
 
 
<math> A+B </math>
 
  
 
===Example 15===
 
===Example 15===

Revision as of 10:46, 11 February 2019

Boolean Algebra Precedence

the order of precedence for boolean algebra is:

  1. Brackets
  2. Not
  3. And
  4. Or

Boolean Identities

Using AND

A.1=A

This equation means that the output is determined by the value of A. So if A =0, The output is 0, and vice versa.

0.A=0

Because there is a 0 in this equation, the output of this will always be 0 regardless of the value of A.

A.A=A

The output is determined by A alone in this equation. This can be simplified to just "A".

A.¯A=0

Here the output will be 0, regardless of A's value. A would have to be 1 and 0 for the output to be 1. This means we can simplify this to just 0.

Using OR

0+A=A

0 or A can be simplified as just A.

1+A=1

1 or A can be simplified as just 1.

A+A=A

A or A can be simplified as just A.

¯A+A=1

NOT A or A can be simplified as just 1.

Boolean Laws

Commutative Law

The Commutative Law is where equations are the same no matter what way around the letters are written. For example

A+B=B+A

or

A.B=B.A

Associate Law

If all of the symbols are the same it doesn't matter which order the equation is evaluated.

A+(B+C)=B+(A+C)

A+(B+C)=B+(A+C)

A+(B+C)=C+(A+B)

So:

A.(B.C)=B.(A.C)

A.(B.C)=B.(A.C)

A.(B.C)=C.(A.B)

Distributive Law

The distributive law is these two equations.

A.(B+C)=A.B+A.C

A+(B.C)=(A+B).(A+C)

This is essentially factorising or expanding the brackets, but you can also:

A.B+A.C=A.(B+C)

A+B.A+C=A+(B.C)

Redundancy Law

Law 1 : A+¯AB=A+B

Proof :

=A+¯AB=(A+¯A)(A+B)=1.(A+B)=A+B


Law 2: A.(¯A+B)=A.B

Proof :

=A.(¯A+B)=A.¯A+A.B=0+A.B=A.B

Identity Law

This is also in the identities section:

A.A=A

A+A=A

Negation Law

Just like in any other logic negating a negative is a positive so:

¯¯A=A

Solving Boolean Equations

Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:

Example 1

Example 2

(¯A+A).(¯A+C)

OR Identity

(¯A+A)=1

AND Identity

=1.(¯A+C)

Simplify

=(¯A+C)

Example 3

(X+Y).(X+¯Y)
Distributive:
X.(Y+¯Y)
Identity laws:
Y+¯Y=1

X.1=X

Example 4

Example 5

Example 6

Example 7

SIMPLIFY (A+C)A+AC+C


(A+C)A+AC+C Complement, Identity.


A((A+C)+C)+C Commutative, Distributive.


A(A+C)+C Associative, Idempotent.


AA+AC+C Distributive.


A+(A+T)C Idempotent, Identity, Distributive.


A+C Identity, twice.

Example 8

Simplify

(X+Y).(X+¯Y)

solution

X.X+X.¯Y+Y.X+Y.¯Y Expanding the brackets

X+X.¯Y+Y.X+0 Use of X.X=X and Y.¯Y=0

X+X(¯Y+Y) Taking X out of the brackets

X+X(1) Use of Y+¯Y=1

X(1)

X

Example 9

(X+Y).(X+¯Y)

X+(Y.¯Y) after distributive law applied

(Y.¯Y)=0

X+0

X

(X+Y).(X+¯Y)=X

Example 10

Example 11

¯A.(A+B).(A.C)(¯A.A+¯A.B).(A+C)¯A.A.A+¯A.A.B+¯A.A.C+¯A.B.C0+0+0+¯A.B.C¯A.B.C

Example 12

Example 13

Simplify: X.(¯X+Y)

(X.¯X)+(X.Y) using the Distributive Law

0+(X.Y) using the identity A.¯A=0

X.Y using the identity A+0=A

Fully simplified the equation

Example 14

Example 15

For this example the Boolean Algebra itself is shown above while the description/the rules that have been used are listed below it:

¯A(A+B)+(B+AA)(A+¯B)

Original expression

¯AA+¯AB+(B+A)A+(B+A)¯B

Idempotent (AA to A), then Distributive, used twice.

¯AB+(B+A)A+(B+A)¯B

Complement, then Identity. (Strictly speaking, we also used the Commutative Law for each of these applications.)

¯AB+BA+AA+B¯B+A¯B

Distributive, two places.

¯AB+BA+A+A¯B

Idempotent (for the A's), then Complement and Identity to remove BB.

¯AB+AB+AT+A¯B

Commutative, Identity; setting up for the next step.

¯AB+A(B+T+¯B)

Distributive.

¯AB+A

Identity, twice (depending how you count it).

A+¯AB

Commutative.

(A+¯A)(A+B)

Distributive.

A+B

Complement, Identity.

Example 16