Difference between revisions of "Boolean Algebra"
(→Example 13) |
(→Boolean Laws) |
||
(77 intermediate revisions by 13 users not shown) | |||
Line 7: | Line 7: | ||
=Boolean Identities= | =Boolean Identities= | ||
+ | ===TRC Video=== | ||
+ | <youtube>https://www.youtube.com/watch?v=ym73-rgnrOQ</youtube> | ||
+ | |||
+ | https://www.youtube.com/watch?v=ym73-rgnrOQ | ||
+ | |||
===Using AND=== | ===Using AND=== | ||
Line 43: | Line 48: | ||
=Boolean Laws= | =Boolean Laws= | ||
+ | ===TRC Video=== | ||
+ | <youtube>https://www.youtube.com/watch?v=Cdqj4XDsUVY</youtube> | ||
+ | |||
+ | https://www.youtube.com/watch?v=Cdqj4XDsUVY | ||
+ | |||
==Commutative Law== | ==Commutative Law== | ||
The Commutative Law is where equations are the same no matter what way around the letters are written. For example | The Commutative Law is where equations are the same no matter what way around the letters are written. For example | ||
Line 76: | Line 86: | ||
<math> A+(B.C) = (A+B).(A+C) </math> | <math> A+(B.C) = (A+B).(A+C) </math> | ||
− | This is essentially factorising or expanding the brackets, but you can also: | + | This is essentially factorising or expanding the brackets, but you can also remove the common factor: |
<math> A.B + A.C = A.(B+C)</math> | <math> A.B + A.C = A.(B+C)</math> | ||
<math> A+B.A+C = A+(B.C) </math> | <math> A+B.A+C = A+(B.C) </math> | ||
+ | |||
+ | You can also remove the common factor if you only have 1 term on one side: | ||
+ | |||
+ | <math> | ||
+ | A.(A + B) = (0+A) . (A + B) | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | A+(A . B) = (1.A) + (A . B) | ||
+ | </math> | ||
+ | |||
+ | if the symbol inside the brackets is a '+' you can add '+0' or if the symbol inside the brackets is '.' you can add '.1'. Doing this will not change the nature of the brackets because 'A' is the same as 'A+0' and is the same as 'A.1'. | ||
==Redundancy Law== | ==Redundancy Law== | ||
===Law 1 :=== | ===Law 1 :=== | ||
− | <math> A + \overline{A} B = A + B </math> | + | <math> A + (\overline{A}. B) = A + B </math> |
Proof : | Proof : | ||
− | <math>= A + \overline{A} B \\ | + | <math>= A + (\overline{A}. B) = A + B \\ |
= (A + \overline{A})(A + B) \\ | = (A + \overline{A})(A + B) \\ | ||
= 1 . (A + B) \\ | = 1 . (A + B) \\ | ||
= A + B </math> | = A + B </math> | ||
+ | |||
+ | <hr> | ||
===Law 2:=== | ===Law 2:=== | ||
Line 103: | Line 127: | ||
= A.B </math> | = A.B </math> | ||
+ | <hr> | ||
===Law 3:=== | ===Law 3:=== | ||
<math> A.(A + B) = A</math> | <math> A.(A + B) = A</math> | ||
− | Proof : | + | Proof using distributive law: |
<math> | <math> | ||
− | A.(A + B) = (0+A) . (A + B) | + | A.(A + B) = (0+A) . (A + B) |
</math> | </math> | ||
− | + | So: | |
− | |||
<math> | <math> | ||
A + (0 . B) | A + (0 . B) | ||
Line 119: | Line 143: | ||
So: | So: | ||
− | |||
<math> | <math> | ||
A + 0 = A | A + 0 = A | ||
</math> | </math> | ||
+ | <hr> | ||
===Law 4:=== | ===Law 4:=== | ||
<math> A+(A . B) = A</math> | <math> A+(A . B) = A</math> | ||
− | Proof : | + | Proof using distributive law: |
<math> | <math> | ||
− | A+(A . B) = (1 . A) + (A . B) | + | A+(A . B) = (1 . A) + (A . B) |
</math> | </math> | ||
− | + | So: | |
− | |||
<math> | <math> | ||
A . (1 + B) | A . (1 + B) | ||
Line 140: | Line 163: | ||
So: | So: | ||
− | |||
− | |||
<math> | <math> | ||
A . 1 = A | A . 1 = A | ||
Line 160: | Line 181: | ||
=Solving Boolean Equations= | =Solving Boolean Equations= | ||
Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find: | Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find: | ||
+ | ===TRC Video=== | ||
+ | <youtube>https://www.youtube.com/watch?v=N1r1D__NMGg</youtube> | ||
+ | |||
+ | https://www.youtube.com/watch?v=N1r1D__NMGg | ||
===Example 1=== | ===Example 1=== | ||
Line 165: | Line 190: | ||
𝐶+(𝐶.𝐷) | 𝐶+(𝐶.𝐷) | ||
</math> | </math> | ||
+ | |||
+ | ------------------------------------ | ||
+ | |||
+ | Take out the common factor C: | ||
+ | |||
+ | <math>(C.D)+(C.1)=C.(D+1)</math>, | ||
+ | |||
+ | We know that <math>1+A=1</math>, | ||
+ | |||
+ | Therefore, <math>C.1</math>, | ||
+ | |||
+ | Use identity <math>A.1=A</math>, | ||
+ | |||
+ | Answer = <math>C</math> | ||
+ | |||
+ | ------------------------------------ | ||
+ | |||
===Example 2=== | ===Example 2=== | ||
− | + | '''A.(C+A)''' | |
− | + | ||
− | + | ||
+ | ------------------------------------ | ||
+ | |Use Distributive Law| | ||
+ | |||
+ | ->'''(A.C)+(A.A)''' | ||
+ | |||
+ | |Use Identity| | ||
+ | '''A.A=A''' | ||
+ | |||
+ | ->'''(A.C)+A''' | ||
+ | |||
+ | |This is the same as writing (could straight apply redundancy rule here)| | ||
+ | |||
+ | ->'''(A.C)+(A.1)''' | ||
+ | |||
+ | |Take out the common factor| | ||
+ | |||
+ | ->'''A.(C+1)''' | ||
+ | |||
+ | |Use Identity| | ||
+ | '''C+1 = 1''' | ||
+ | |||
+ | ->'''A''' | ||
+ | |||
===Example 3=== | ===Example 3=== | ||
<math> | <math> | ||
𝐵.(𝐴+\overline{𝐵}) | 𝐵.(𝐴+\overline{𝐵}) | ||
</math> | </math> | ||
+ | |||
+ | ------------------------------------ | ||
+ | B.(A+ NOT B) | ||
+ | REDUNDANCY | ||
+ | (A + NOT B) | ||
+ | REDUNDANCY | ||
+ | |||
+ | ANSWER = NOT B | ||
+ | |||
===Example 4=== | ===Example 4=== | ||
<math> | <math> | ||
𝑋.(\overline{𝑋}+𝑌) | 𝑋.(\overline{𝑋}+𝑌) | ||
</math> | </math> | ||
− | + | ||
+ | ------------------------------------ | ||
<math> | <math> | ||
− | 𝑋. | + | 𝑋.\overline{𝑋} = 0 |
</math> | </math> | ||
− | |||
<math> | <math> | ||
− | + | 0+𝑌 = 𝑌 | |
</math> | </math> | ||
− | ===Example | + | |
+ | ===Example 5=== | ||
<math> | <math> | ||
− | + | 𝑋.(X+\overline{Y}) | |
</math> | </math> | ||
− | + | ||
+ | ------------------------------------ | ||
<math> | <math> | ||
− | + | (0+𝑋).(X+\overline{Y}) | |
</math> | </math> | ||
− | + | ||
<math> | <math> | ||
− | + | 𝑋+(0.\overline{Y}) | |
</math> | </math> | ||
− | + | ||
<math> | <math> | ||
− | + | 𝑋+(0) | |
</math> | </math> | ||
− | + | ||
<math> | <math> | ||
− | + | 𝑋 | |
</math> | </math> | ||
− | ===Example | + | |
+ | ===Example 8=== | ||
<math> | <math> | ||
− | \overline{ | + | 𝐷.𝐸+𝐸.\overline{𝐷} |
</math> | </math> | ||
+ | ------------------------------------ | ||
+ | D.E+E.D | ||
+ | Distributivetive Law | ||
+ | D.(E+D) | ||
+ | Redundancy Law | ||
+ | D | ||
+ | |||
===Example 13=== | ===Example 13=== | ||
<math> | <math> | ||
Line 215: | Line 299: | ||
</math> | </math> | ||
− | + | ------------------------------------ | |
+ | Expand the brackets: | ||
+ | <math> | ||
+ | (\overline {A} . B) + (\overline{B} . B) | ||
+ | </math> | ||
− | = | + | Not B AND B = 0: |
+ | <math> | ||
+ | \overline {A}.B) + (0) | ||
+ | </math> | ||
− | + | Something OR 0 is Something: | |
+ | <math> | ||
+ | \overline {A}.B | ||
+ | </math> | ||
− | ===Example | + | ===Example 14=== |
+ | <math> | ||
+ | \overline{B} + (A.B) | ||
+ | </math> | ||
− | + | ------------------------------------ | |
− | + | (B) + (A.B) | |
− | + | Distributive Law. | |
+ | (B + A) . (B + B) | ||
+ | Not B cancels out. | ||
+ | B + A . 1 | ||
+ | = B+A | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Example 19=== | ===Example 19=== | ||
− | <math> ( | + | <math>(X + Y) . (X + \overline{Y})</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ------------------------------------ | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<br>Distributive: | <br>Distributive: | ||
<br><math>X . (Y + \overline{Y})</math> | <br><math>X . (Y + \overline{Y})</math> | ||
Line 270: | Line 351: | ||
<math> X </math> | <math> X </math> | ||
− | === | + | =====End of Page===== |
Latest revision as of 08:10, 23 August 2023
Contents
Boolean Algebra Precedence
the order of precedence for boolean algebra is:
- Brackets
- Not
- And
- Or
Boolean Identities
TRC Video
https://www.youtube.com/watch?v=ym73-rgnrOQ
Using AND
This equation means that the output is determined by the value of A. So if A =0, The output is 0, and vice versa.
Because there is a 0 in this equation, the output of this will always be 0 regardless of the value of A.
The output is determined by A alone in this equation. This can be simplified to just "A".
Here the output will be 0, regardless of A's value. A would have to be 1 and 0 for the output to be 1. This means we can simplify this to just 0.
Using OR
0 or A can be simplified as just A.
1 or A can be simplified as just 1.
A or A can be simplified as just A.
NOT A or A can be simplified as just 1.
Boolean Laws
TRC Video
https://www.youtube.com/watch?v=Cdqj4XDsUVY
Commutative Law
The Commutative Law is where equations are the same no matter what way around the letters are written. For example
or
Associate Law
If all of the symbols are the same it doesn't matter which order the equation is evaluated.
So:
Distributive Law
The distributive law is these two equations.
This is essentially factorising or expanding the brackets, but you can also remove the common factor:
You can also remove the common factor if you only have 1 term on one side:
if the symbol inside the brackets is a '+' you can add '+0' or if the symbol inside the brackets is '.' you can add '.1'. Doing this will not change the nature of the brackets because 'A' is the same as 'A+0' and is the same as 'A.1'.
Redundancy Law
Law 1 :
Proof :
Law 2:
Proof :
Law 3:
Proof using distributive law:
So:
So:
Law 4:
Proof using distributive law:
So:
So:
Identity Law
This is also in the identities section:
Negation Law
Just like in any other logic negating a negative is a positive so:
Solving Boolean Equations
Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:
TRC Video
https://www.youtube.com/watch?v=N1r1D__NMGg
Example 1
Take out the common factor C:
,
We know that
,Therefore,
,Use identity
,Answer =
Example 2
A.(C+A)
|Use Distributive Law|
->(A.C)+(A.A)
|Use Identity| A.A=A
->(A.C)+A
|This is the same as writing (could straight apply redundancy rule here)|
->(A.C)+(A.1)
|Take out the common factor|
->A.(C+1)
|Use Identity| C+1 = 1
->A
Example 3
B.(A+ NOT B) REDUNDANCY (A + NOT B) REDUNDANCY
ANSWER = NOT B
Example 4
Example 5
Example 8
D.E+E.D Distributivetive Law D.(E+D) Redundancy Law D
Example 13
Expand the brackets:
Not B AND B = 0:
Something OR 0 is Something:
Example 14
(B) + (A.B) Distributive Law. (B + A) . (B + B) Not B cancels out. B + A . 1 = B+A
Example 19
Distributive:
Identity laws:
Alternative
Expanding the brackets
Use of and
Taking X out of the brackets
Use of