Difference between revisions of "Boolean Algebra"

From TRCCompSci - AQA Computer Science
Jump to: navigation, search
Line 6: Line 6:
 
this can be done by adding the following around any term you wish to negate.:
 
this can be done by adding the following around any term you wish to negate.:
  
  <nowiki>\overline{}</nowiki>   
+
  <nowiki><math> \overline{} </math></nowiki>   
  
 
<math> \overline{a}</math>
 
<math> \overline{a}</math>
Line 12: Line 12:
 
is
 
is
  
  <nowiki>\overline{a}</nowiki>
+
  <nowiki> <math> \overline{a} </math></nowiki>
  
 
<math> \overline{\overline{a}+b}</math>
 
<math> \overline{\overline{a}+b}</math>
Line 18: Line 18:
 
is
 
is
  
  <nowiki>\overline{\overline{a}+b}</nowiki>.
+
  <nowiki> <math> \overline{\overline{a}+b} </math></nowiki>.
=AND Identities=
 
  
=OR Identities=
+
=Identities=
 +
==AND Identities==
  
=Commutative Law=
+
==OR Identities==
  
=Associate Law=
+
=Laws=
 +
==Commutative Law==
  
=Distributive Law=
+
==Associate Law==
  
=Redundancy Law=
+
==Distributive Law==
  
=Identity Law=
+
==Redundancy Law==
  
=Negation Law=
+
==Identity Law==
 +
 
 +
==Negation Law==
 +
 
 +
=Equations=
 +
Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:
 +
 
 +
==Example 1==
 +
 
 +
==Example 2==
 +
 
 +
==Example 3==
 +
 
 +
==Example 4==
 +
 
 +
==Example 5==
 +
 
 +
==Example 6==
 +
 
 +
==Example 7==

Revision as of 07:49, 8 May 2018

Any equation must be within the <math> </math> tags. For Boolean alegbra the main issue is how to negate a term like:

[math] \overline{a}[/math] or [math] \overline{\overline{a}+b}[/math]

this can be done by adding the following around any term you wish to negate.:

<math> \overline{} </math>  

[math] \overline{a}[/math]

is

 <math> \overline{a} </math>

[math] \overline{\overline{a}+b}[/math]

is

 <math> \overline{\overline{a}+b} </math>.

Identities

AND Identities

OR Identities

Laws

Commutative Law

Associate Law

Distributive Law

Redundancy Law

Identity Law

Negation Law

Equations

Solving equations is a matter of applying the laws of boolean algrebra, followed by any of the identities you can find:

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7